Isotonic Regression under Lipschitz Constraint

نویسندگان

  • L. Yeganova
  • W.J. Wilbur
چکیده

The pool adjacent violators (PAV) algorithm is an efficient technique for the class of isotonic regression problems with complete ordering. The algorithm yields a stepwise isotonic estimate which approximates the function and assigns maximum likelihood to the data. However, if one has reasons to believe that the data were generated by a continuous function, a smoother estimate may provide a better approximation to that function. In this paper, we consider the formulation which assumes that the data were generated by a continuous monotonic function obeying the Lipschitz condition. We propose a new algorithm, the Lipschitz pool adjacent violators (LPAV) algorithm, which approximates that function; we prove the convergence of the algorithm and examine its complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz Unimodal and Isotonic Regression on Paths and Trees

We describe algorithms for finding the regression of t, a sequence of values, to the closest sequence s by mean squared error, so that s is always increasing (isotonicity) and so the values of two consecutive points do not increase by too much (Lipschitz). The isotonicity constraint can be replaced with a unimodular constraint, where there is exactly one local maximum in s. These algorithm are ...

متن کامل

Non-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation

In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.

متن کامل

Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression

Generalized Linear Models (GLMs) and Single Index Models (SIMs) provide powerful generalizations of linear regression, where the target variable is assumed to be a (possibly unknown) 1-dimensional function of a linear predictor. In general, these problems entail non-convex estimation procedures, and, in practice, iterative local search heuristics are often used. Kalai and Sastry (2009) recently...

متن کامل

LASSO ISOtone for High Dimensional Additive Isotonic Regression

Additive isotonic regression attempts to determine the relationship between a multi-dimensional observation variable and a response, under the constraint that the estimate is the additive sum of univariate component effects that are monotonically increasing. In this article, we present a new method for such regression called LASSO Isotone (LISO). LISO adapts ideas from sparse linear modelling t...

متن کامل

The Isotron Algorithm: High-Dimensional Isotonic Regression

The Perceptron algorithm elegantly solves binary classification problems that have a margin between positive and negative examples. Isotonic regression (fitting an arbitrary increasing function in one dimension) is also a natural problem with a simple solution. By combining the two, we get a new but very simple algorithm with strong guarantees. Our ISOTRON algorithm provably learns Single Index...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2009